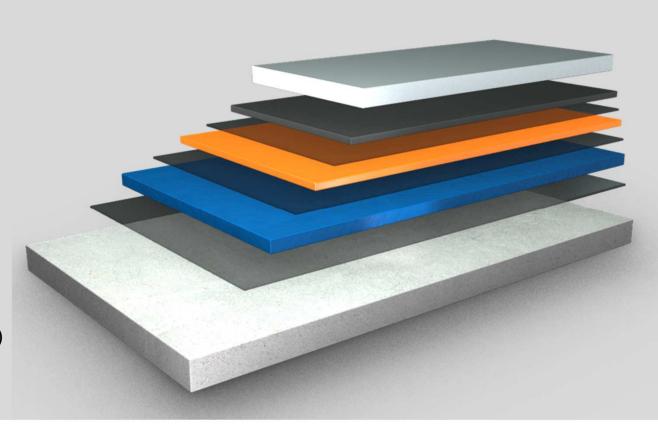


ПРОДУКТОВАЯ ГРУППА ФУТЕРОВКА КИРПИЧОМ И ПЛИТКОЙ

- Герметизирующие мембраны на основе полиуретана, эпоксидной смолы, полиэфирной смолы (ненасыщенной), виниловой эфирной смолы, фурановой смолы; индивидуальные решения; гуммировочные материалы;
- Мастики на основе синтетических смол на основе фурановой смолы, фенольной смолы, полиэфирной смолы (ненасыщенной), виниловой эфирной смолы, различных растворов на основе жидкого стекла; индивидуальные решения
- Обычные кирпичи, фасонные кирпичи и специальные форматы различных марок (кислотоупорная керамика, графитовые и углеродные кирпичи, огнеупорные материалы)


НАПОЛЬНЫЕ ПОКРЫТИЯ

На основе:

- Полиуретан
- Эпоксидная смола
- Фурановая/фенольная смола
- Винилэфир
- Полиэстер

Способ нанесения:

- Самовыравнивающаяся система
- Затирка
- Многослойное покрытие
- Система ламината, армированное стекловолокном (FRP)
- Напыляемое покрытие

Эпоксидные смолы | свойства

- Отверждение (полимеризация) происходит с очень низкой линейной усадкой.
- Различные составы смолы могут создавать различные по твердости покрытия.
- Адгезия к бетону и стали с абразивной обработкой очень хорошая.
- Для современных эпоксидных смол: широкая устойчивость к временному воздействию среды.
- Используются как строительный раствор и как материал для покрытия.

Винилэфирные смолы | свойства

- Процесс закалки представляет собой радикальную цепную реакцию.
- Из-за радикальной реакции материалы чувствительны к температуре и УФ-свету.
- Можно использовать порошкообразные или жидкие отвердители (в зависимости от спецификации системы).
- Одним из возможных отвердителей является пероксид метилэтилкетона.
- Реакция отверждения зависит от ускорителя (например, кобальта).
- Высокая химическая стойкость к различным видам химикатов.
- Отличная устойчивость к окислительным средам.
- Значительная усадка при отверждении.
- Из-за стирола необходимо учитывать взрывобезопасность.

Ненасыщенные полиэфирные смолы | свойства

- Из-за радикальной реакции материалы чувствительны к температуре и УФ-свету.
- Реакция упрочнения зависит от ускорителя (например, кобальта).
- Широкая химическая стойкость к различным типам химикатов.
- Отличная устойчивость к окислительным средам.
- Значительная усадка при отверждении.
- После добавления подходящих наполнителей UP-смолы могут использоваться в качестве раствора или наполнительной массы.
- С помощью стекловолоконных матов можно формировать FRP-ламинаты для защиты бетонных и стальных поверхностей.
- Из-за стирола необходимо учитывать взрывобезопасность.

Полиуретановые смолы | свойства

- Более твердые составы обладают более высокой химической стойкостью; более эластичные варианты проявляют меньшую химическую устойчивость.
- Используется в качестве покрытия пола, деформационных швов.



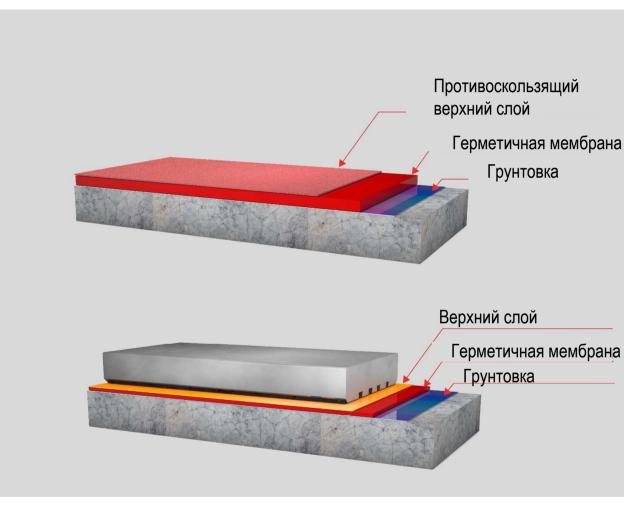
Фенольные смолы | свойства

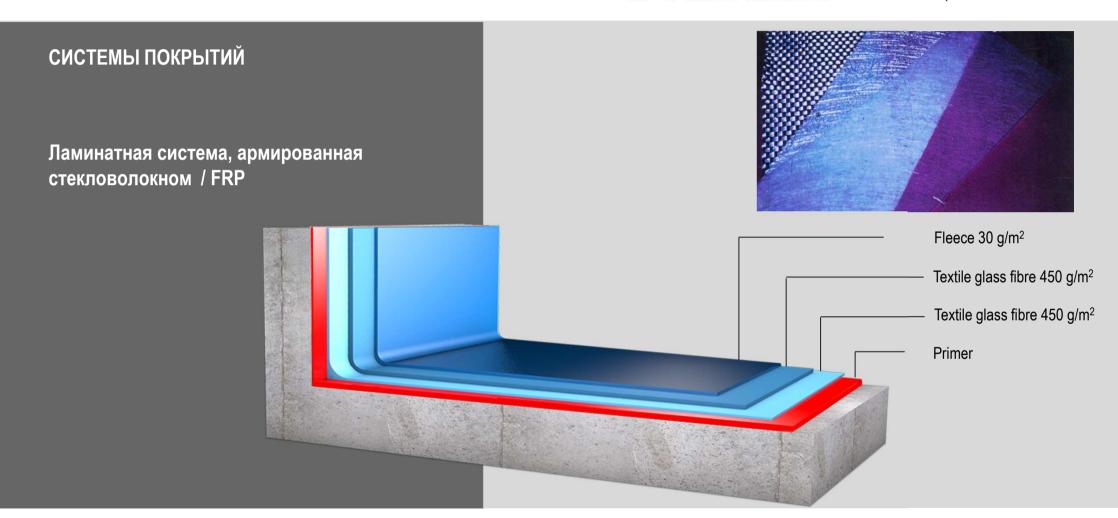
- Отверждение (поликонденсация) протекает с очень высокой линейной усадкой.
- Отверждение может быть ускорено путем повышения температуры.
- Эти жидкие материалы вызывают химическую реакцию после добавления определенного соединения.
- Очень широкая и очень высокая хим. стабильность, за исключением окислительных сред.
- Высокая твердость + модуль упругости; высокая термостойкость.
- Используется как ламинат FRP и как строительный раствор.

Фурановые смолы | свойства

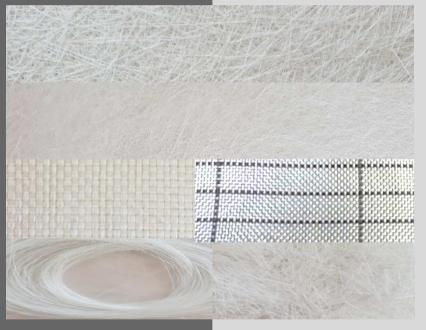
- Порошкообразные и жидкие отвердители.
- Отверждение (поликонденсация) протекает со сравнительно высокой усадкой.
- Стойкость как у фурановых смол, но ниже химическая.
- Устойчивость к щелочам и более высокая к кислотам.
- Используется как раствор и система ламината.

СИНТЕТИЧЕСКИЕ СМОЛЫ | химическая стойкость


	Щелочи/ Соли	Органические кислоты	Минеральные кислоты	Алифатические растворители	Ароматические растворители	Угле водород	Окисляющая среда
Эпоксид	1	3 - 4	2 - 3	3	2 - 3	4	4
Полиуретан	3 - 4	2 - 3	2	3 - 4	4	4	2 - 3
Фуран	1	1	1 - 2	1	1 - 2	1 - 2	3 - 4
Полиэстер	3	2 - 3	1 - 2	2 - 3	3 - 4	3 - 4	1 - 2
Виниловый эфир	1 - 2	1 - 2	1 - 2	1 - 2	1 - 2	1 - 2	1 - 2


^{1 =} устойчивы до максимально возможной концентрации (постоянно)3 = краткосрочная устойчивость (72 ч – макс. 14 ч) 2 = ограниченная устойчивость (14 – макс. 28 день) 4 = не устойчив (макс. 8 ч)

СИСТЕМЫ ПОКРЫТИЙ


Покрытие пола, устойчивого к воздействию концентрированной серной кислоты

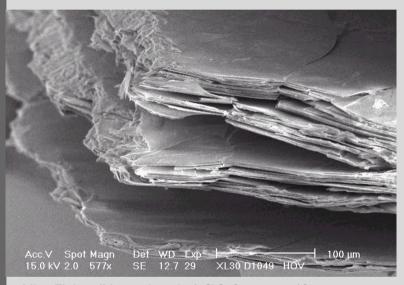
- Специальная защитная облицовка пола на основе эпоксидной смолы
- Облицовка плиткой с раствором на жидком стекле и непроницаемой мембраной

СИСТЕМЫ ПОКРЫТИЙ Ламинатная система, армированная стекловолокном / FRP

Текстильное стекловолокно 300 г/м 2 ; 450 г/м 2

Флис 30 г/м²

Ровинг из стекловолокна 240 г/м 2 ; 580 г/м 2 ; и 280 г/м 2 (смешанная ткань из стекложгута)


Ровинг для распыления

Системы распыления с барьерными наполнителями

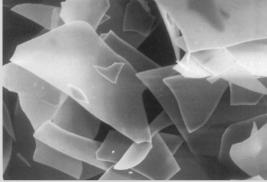
Действие барьерных наполнителей (хлопьев):

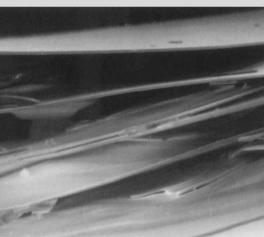
Хлопья считаются абсолютно плотными и располагаются параллельно грунту (при правильном нанесении).

Покрытия Steulerflake достигают высокого сопротивления проникновению даже при нанесении тонким слоем.

Mica Flakes (Muscovite mica) Ø 250 μ m, x = 10 μ m

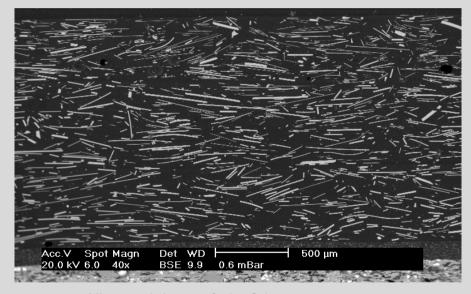
Системы распыления с барьерными наполнителями


Действие барьерных наполнителей (хлопьев):


Хлопья считаются абсолютно плотными и располагаются параллельно грунту (при правильном нанесении).

Покрытия Steulerflake достигают высокого сопротивления проникновению даже при нанесении тонким слоем.

Хлопья - различные типы Стекло (кварц) Минералы (слюда) толщина 3 - 5 мкм 0,4 мм (для распыления) 3,2 мм (для нанесения тровелем) до 50 - 60 слоев / мм толщины



Системы распыления с барьерными наполнителями

Действие барьерных наполнителей (хлопьев):

Хлопья считаются абсолютно плотными и располагаются параллельно грунту (при правильном нанесении).

Покрытия Steulerflake достигают высокого сопротивления проникновению даже при нанесении тонким слоем.

Microscopic image of mica flakes

Преимущества системы Steulerflake

Преимущества:

- высокая термостойкость (до 220 °C сухого воздуха)
- высокая стойкость к проникновению
- высокое сопротивление давлению
- хорошая химическая
- стойкость к маслам, смазкам, растворителям, серной и соляной кислоте
- простота применения

Недостатки:

- хрупкий и поэтому чувствителен к разрушению и трещинам
- ремонт всегда требует абразивной обработки из-за требуемой высокой шероховатости поверхности
- нелегко поддерживать равномерную толщину слоя при нанесении

Airless spray application

"Spark test" (per mm thicknes etwa 3 KV)

СИСТЕМЫ ПОКРЫТИЙ

Коэффициент проницаемости при 37 °C

Хлопьевидное покрытие (например, Oxydur Flake, Keraflake 6H)	1,2
Напыление чешуйчатого покрытия (например, Steulerflake SPG, Korroplast VE 310)	2,1
Винилэфирная смола (без наполнителей)	7,0
Бутилкаучук	4,0
Хлорбутиловый каучук	5,0
Хлоропреновый каучук	44,0
Натуральный каучук (невулканизированный)	53,0

Как оптимизировать сопротивление проницаемости

Резиновые футеровки: Выбор подходящей резины

Покрытия: Использование подходящих систем смол

Покрытия: Выбор подходящего наполнителя: стеклянные хлопья, слюда (для

покрытий)

Толщина слоя

Наружная теплоизоляция

ГУММИРОВОЧНЫЕ ПОКРЫТИЯ

Типы гуммировочных покрытий

•	Бутиловый каучук	IIR
•	Хлорбутиловый каучук	CIIR
•	Бромбутиловый каучук	BIIR
•	Полиизопреновый каучук	IR
•	Хлоропреновый каучук	CR
•	Натуральный каучук	NR
•	Стирол-бутадиеновый каучук	SBR
•	Хлорсульфонированный полиэтилен (CSM

Гуммирование в мастерской

- Работа с невулканизированной резиной
- Вулканизация в автоклаве

Гуммирование на стройплощадке

- Вулканизация с помощью пара или давления
- Самовулканизирующиеся гуммировки
- Предвулканизированные гуммировки

ГУММИРОВОЧНЫЕ ПОКРЫТИЯ

Что такое гуммировка?

- Вулканизация натуральных и синтетических каучуков
- Эластомеры (мягкая резина) или дуропласты (твердая резина, эбонит) свойства могут быть очень разными (сырье, производство)
- До вулканизации: пластичный, после вулканизации: эластичный
- Основные области применения: автомобильная промышленность (шины, шланги, амортизаторы, ...) технические резиновые изделия: (подошвы для обуви, уплотнения, конвейерные ленты, надувные лодки...)

ГУММИРОВОЧНЫЕ ПОКРЫТИЯ

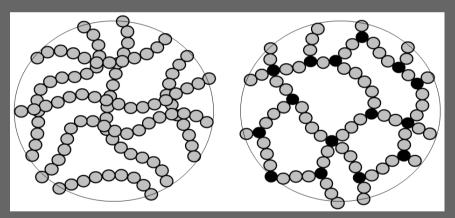
Из чего сделана гуммировка?

Чрезвычайно сложный материал с большим количеством компонентов:

Полимер - химическая стойкость

Наполнители - механическая прочность

Связывающий агент - сопротивление и диффузия


Ускоритель - соединение происходит быстрее/при более низких температурах

Замедлитель - отсутствие соединения в процессе производства Антивозрастной агент - отсутствие растрескивания под воздействием озона/ ультрафиолета

Вспомогательные вещества для переработки - ьолее плавное течение в экструдере

Акиватор адгезии - хорошее соединение с основой

ГУММИРОВОЧНЫЕ ПОКРЫТИЯ

До вулканизации:

- Нет перекрестных связей •
- Пластичное состояние

После вулканизации:

- Образование связей
- Эластичное состояние

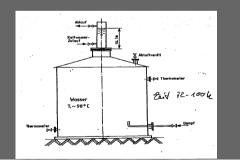
Вулканизация – химия

Вулканизация = образование перекрестных связей в каучуке

Вулканизация = реакция связывающего агента и полимера

Отдельные цепи превращаются в трехмерную сеть

Связывающий агент: Cepa (Goodyear) уже более 150 лет


Зеленый/синий: Полимеры

Черный: Сера

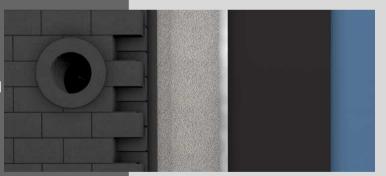
CH₃

ГУММИРОВОЧНЫЕ ПОКРЫТИЯ

Вулканизация

Множество возможностей:

- Автоклав (давление/температура) твердые и мягкие сорта
- Горячая вода (температура) твердые и мягкие сорта
- Пар/Комп. Воздух (давление/температура) твердые и мягкие сорта
- Горячий воздух (температура) мягкие сорта: самовулканизация
- Контакт со средой (температура) мягкие сорта: самовулканизация


ГУММИРОВОЧНЫЕ ПОКРЫТИЯ

Использование резиновой футеровки:

- Резервуары для хранения
- Реакционные резервуары
- Трубы
- Колонны
- Скрубберы
- Сгустители/отстойники
- Мешалки
- Каналы для дымовых газов
- Бетонные резервуары
- Мембрана под кирпичной облицовкой

Газоочистка

Мембрана под угольным кирпичом

Газоходы

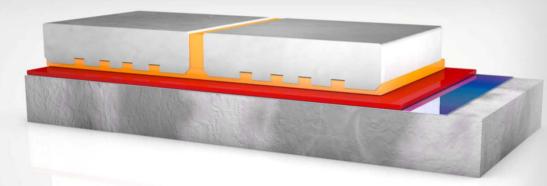
Емкости

ФУТЕРОВОЧНЫЕ ОБЛИЦОВКИ

- Керамические кирпичи и плитки
- Углеродистые кирпичи, -плитки / графитовые кирпичи
- Базальтовые кирпичи
- Натуральный камень (гранит)

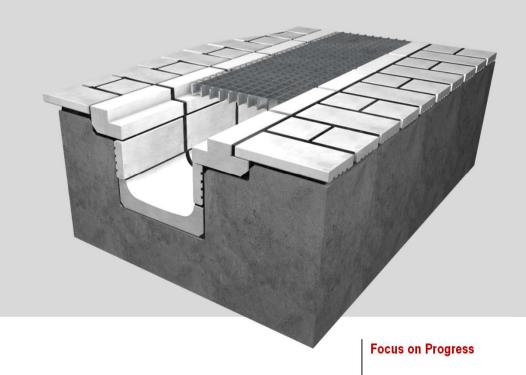
ФУТЕРОВОЧНЫЕ ОБЛИЦОВКИ

ПРИМЕР: ПОКРЫТИЕ ПОЛОВ



Кислотостойкие напольные покрытия

- Xим. стойкость: H₂SO₄ 98 %
- Темп. стойкость до 100 °C



ФУТЕРОВОЧНЫЕ ОБЛИЦОВКИ

Футеровка отстойников и приямков

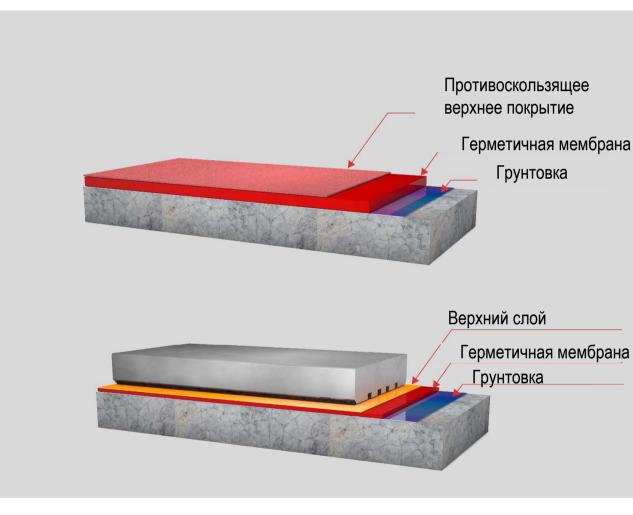
- Химическая стойкость к различным химическим веществам
- Температурная стойкость до 100 °C
- Длительная нагрузка

ФУТЕРОВОЧНЫЕ ОБЛИЦОВКИ

Пример: ремонт полов

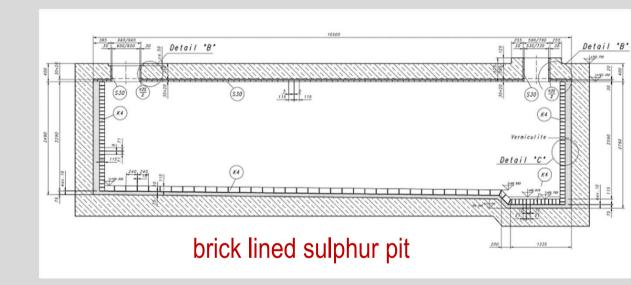
Регулярное техническое обслуживание сокращает время остановок и расходы на ремонт

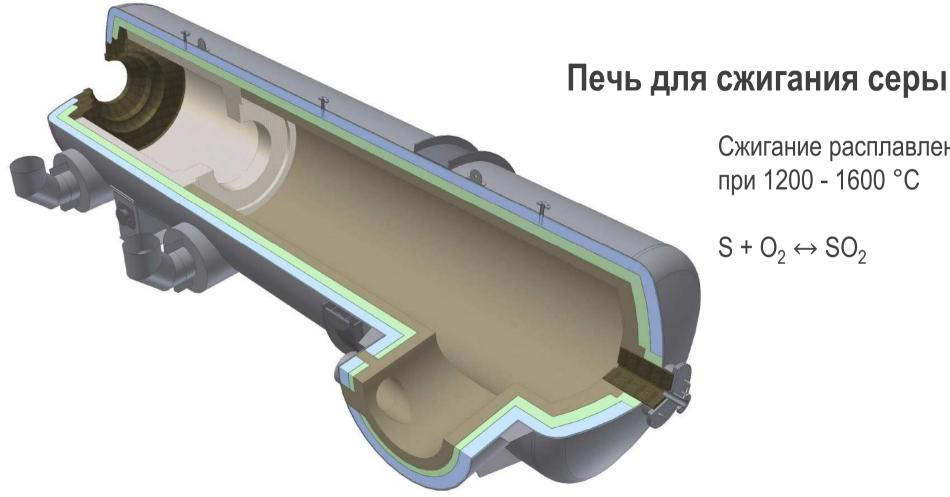
Поврежденные серной кислотой участки бетона


Участок после ремонта

ПРОИЗВОДСТВО СЕРНОЙ КИСЛОТЫ

Защита полов

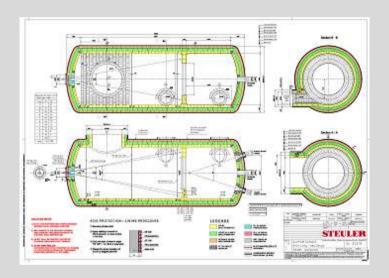

- Специальная эпоксидное покрытие пола
- Облицовка плиткой с калийным раствором на основе жидкого стекла и герметичной мембраной



ПРОИЗВОДСТВО СЕРНОЙ КИСЛОТЫ

СЕРНАЯ ЯМА - КОНСТРУКЦИЯ КИРПИЧНОЙ ФУТЕРОВКИ

- Температура: 120 150 °C
- Защита бетонных поверхностей от повышенной температуры
- Вермикулитовая изоляция Steuler
- Кирпичная облицовка на Steuler Acid Cement S50 HF (раствор на основе силиката калия) и/или Furadur Kitt (раствор на основе фурановой смолы)

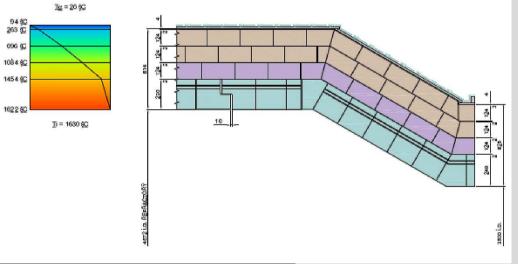

Сжигание расплавленной серы при 1200 - 1600 °C

$$S + O_2 \leftrightarrow SO_2$$

ПРОИЗВОДСТВО СЕРНОЙ КИСЛОТЫ

ПЕЧЬ ДЛЯ СЖИГАНИЯ СЕРЫ -ТРУДНОСТИ

- высокая рабочая температура
- прерывистый режим работы (вкл/выкл)
- точка росы (горячая оболочка/холодная оболочка)
- коррозионная атмосфера SO2


производство серной кислоты

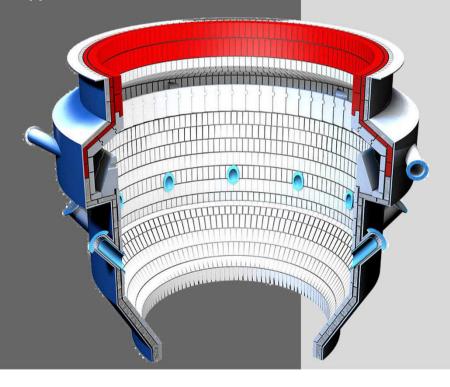
ПЕЧЬ ДЛЯ СЖИГАНИЯ СЕРЫ

Расчет теплопередачи

Количество и расположение компенсационнных

ШВОВ

производство серной кислоты



Конструкция Вентури

- Экстремальные требования к конструкции футеровки
- Химическая стойкость к воздействию кислоты
- Температурная стойкость на входе газа
- Износостойкость против дымового газа
- Температурные изменения требуют специальных решений: Использование графита до прибл. 450 °C
- При температурах > 450 °C требуются особые качества: Плавленый кварц
- SiC кирпичи

ПРОИЗВОДСТВО СЕРНОЙ КИСЛОТЫ

ОЧИСТКА / ОХЛАЖДЕНИЕ ГАЗА

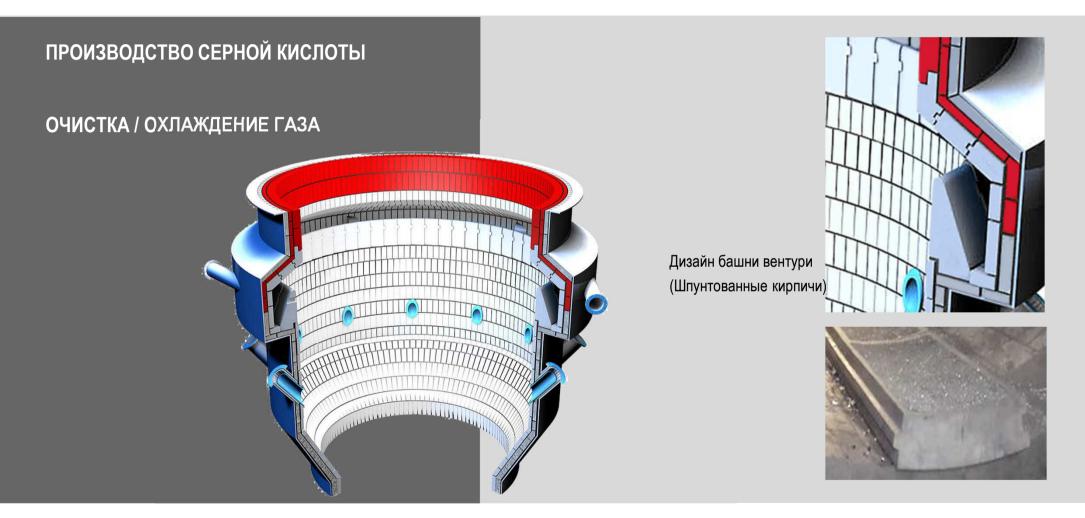
Конструкция Вентури

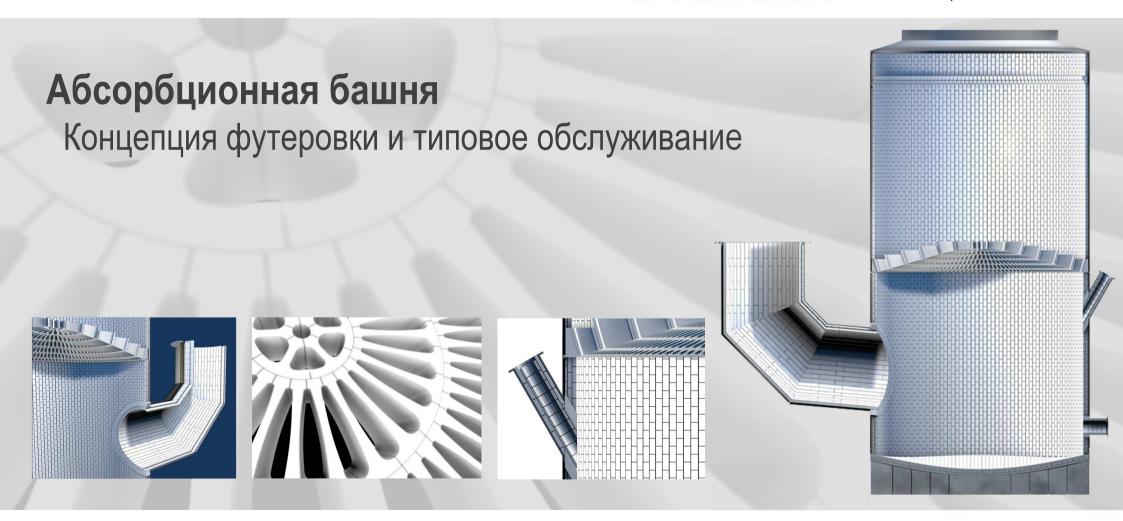
- Экстремальные требования к конструкции футеровки
- Химическая стойкость к воздействию кислоты
- Температурная стойкость на входе газа
- Износостойкость против дымового газа
- Температурные изменения требуют специальных решений: Использование графита до прибл. 450 °C
- При температурах > 450 °C требуются особые качества: Плавленый кварц
- SiC кирпичи

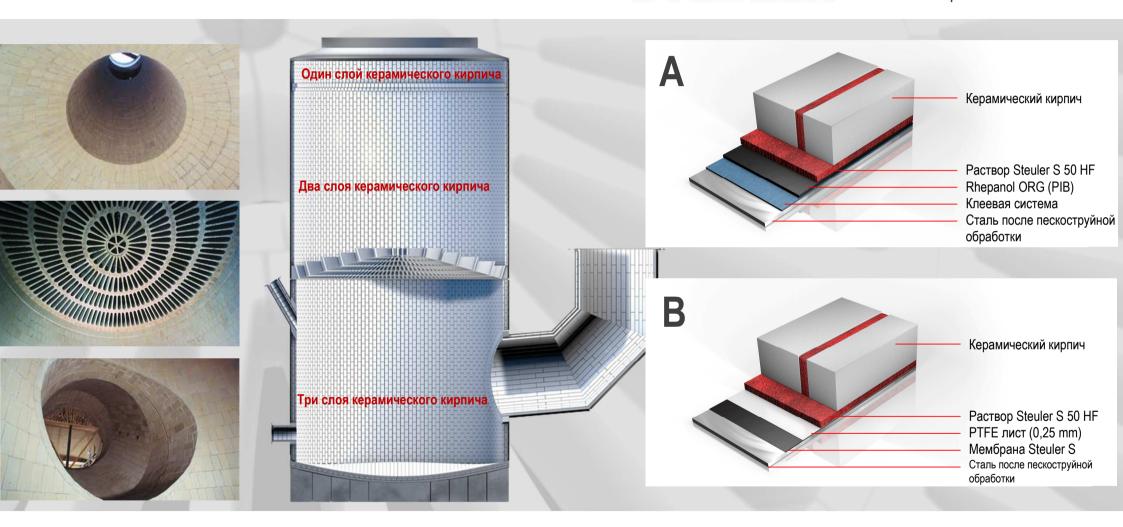
производство серной кислоты

ОЧИСТКА / ОХЛАЖДЕНИЕ ГАЗА

- Разрушенные швы (из-за высоких температур)
- Ремонтные работы должны быть завершены в течение 48 часов общего времени простоя







Повреждения швов

После ремонта

ПРОИЗВОДСТВО СЕРНОЙ КИСЛОТЫ

Абсорбционная башня – вход газа

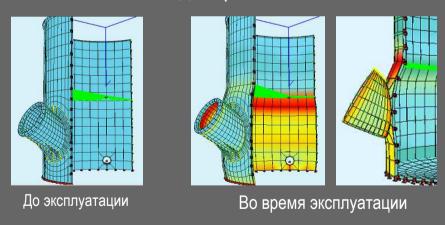
- Удаление дефектов кирпичной облицовки
- Удаление проржавевшего штуцера
- Подключение нового штуцера
- Покрытие репанолом и кирпичная футеровка

Исходная ситуация

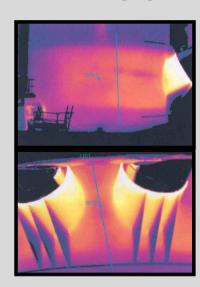
Удаление штуцера

Ремонт стали

Новой покрытие

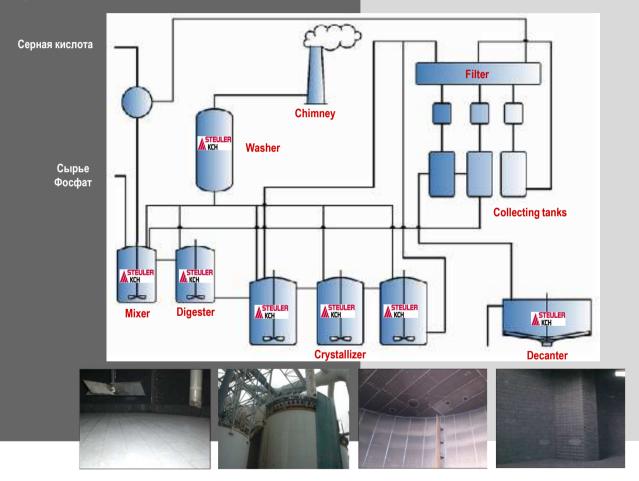

Ремонт закончен

ПРОИЗВОДСТВО СЕРНОЙ КИСЛОТЫ


ОБСЛУЖИВАНИЕ

Абсорбционная башня – Анализ неисправностей

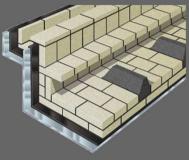
Моделирование FEA:

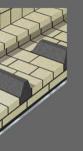

FLIR Imaging:

Вход газа:трещины, дефекты кирпича

- Неоднородное распределение температуры
- Деформации в стальной оболочке

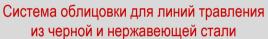
производство фосфорной кислоты

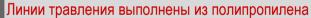

ПРОИЗВОДСТВО ФОСФОРНОЙ КИСЛОТЫ

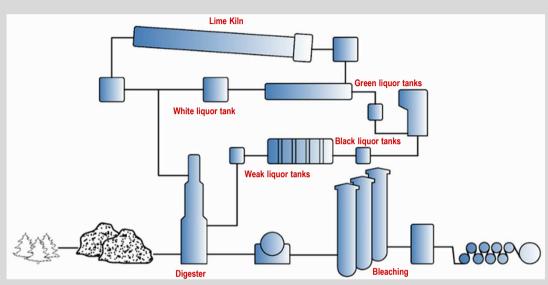

Оборудование	Гуммирование	Футеровка
Мешалка	CIIR BIIR	Угольный кирпич 65мм
Реактор	CIIR BIIR	Угольный кирпич 65мм
Кристаллизатор (обечайка) Кристаллизатор (днище)	CIIR BIIR CIIR/CR	1 м обечайка и днище угольным кирпичом; под мешалкой слой вертикально установл. кирпича из полимербетона;
Промежуточное баковое оборудование	CIIR BIIR	_
Сгуститель (Thickener)	CIIR BIIR	2м высота; днище угольным кирпичом 65 мм;

Оборудование	Гуммирование	Футеровка
Резервуар для хранения	CIIR/CR BIIR	_
Реакционная емкость (attack vessel)	CIIR BIIR	Угольный кирпич 65мм
Реакционная емкость (digester)	CIIR BIIR	Угольный кирпич 65мм
Промежуточная емкость	CIIR BIIR	Угольный кирпич 65мм
Ионообменник	NR (Hard rubber)	_
Теплообменник	NR (Hard rubber)	_
Валы / винт мешалки	NR (Hard rubber)	_

ТРАВИЛЬНЫЕ ВАННЫ







ЦЕЛЛЮЛОЗНО-БУМАЖНЫЙ КОМБИНАТ

